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Fig. 1. Dye drift simulation using flow map methods. Our novel strategy for flow map evolution, Epsilon-Difference Gradient Evolution (EDGE) (blue dye) and
Four-Point Epsilon Difference (ED4) (purple dye), achieves vorticity conservation on par with the original Eulerian Flow Map (EFM) method (red dye), but with
significantly reduced memory usage. While EFM requires 37.89 GB of overall simulation memory, EDGE cuts this down to 10.79 GB, and ED4 further reduces
it to 8.54 GB—a performance leap without compromising accuracy.

We propose the Epsilon Difference Gradient Evolution (EDGE) method for
accurate flow-map calculation on grids via Hermite interpolation without
using velocity buffers. Our key idea is to integrate Gradient Evolution for
accurate first-order derivatives and a tetrahedron-based Epsilon Difference
scheme to compute higher-order derivatives with reduced memory con-
sumption. EDGE achieves𝑂 (1) memory usage, independent of flow map
length, while maintaining vorticity preservation comparable to buffer-based
methods. We validate our methods across diverse vortical flow scenarios,
demonstrating up to 90% backward map memory reduction and significant
computational efficiency, broadening the applicability of flow-map methods
to large-scale and complex fluid simulations.
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1 Introduction
Flow-map methods have garnered increasing attention for their ex-
ceptional ability to preserve spatiotemporal vortical structures. The
fundamental mechanism underlying this capability lies in construct-
ing a perfect long-range flow map between frames. As demonstrated
in [Deng et al. 2023] and subsequent works, a perfect flow map
must satisfy two key geometric properties: (1) a point undergoing
a forward map followed by a backward map returns to its original
position, and (2) the product of the forward and backward Jacobians
equals identity. To date, two representations have been established
for constructing a perfect flowmap: a purely Eulerian representation
on grids, through the use of velocity buffers (e.g., storing a sequence
of previous frames or training a neural network), and a Lagrangian
representation, through the use of moving particles carrying the
gradients of flow maps. The core idea behind both mechanisms is
the same: each flow map is represented by a Lagrangian trajectory
in the spatiotemporal domain (a backward map for the grid repre-
sentation and a forward map for the particle representation) that
allows points to move forward or backward in an exactly symmetric
manner along the temporal axis.
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The computation and memory costs for both mechanisms are
significant. In an Eulerian setting, a reverse advection step is re-
quired for every grid node to construct its long-range trajectory,
necessitating 𝑂 (𝑛) velocity buffers and evolution steps for the 𝑛-th
time step. Compressing such storage into implicit representations,
such as training a neural network [Deng et al. 2023], can reduce the
memory cost to 𝑂 (1), but it incurs significant computational and
training overhead, as the training must be performed at every time
step. On the Lagrangian side, particles are used to represent the flow
map [Zhou et al. 2024], allowing trajectories to start from arbitrary
points rather than grid nodes. This approach achieves𝑂 (1) memory
per particle without requiring velocity buffers. However, as a typi-
cal particle-grid method, particle flow maps demand 8–16 particles
per grid cell in 3D, leading to substantial memory consumption
and a less coherent memory layout due to the use of particles. To
date, there is no perfect solution that enables a flow-map method to
retain its vorticity-preserving capability while maintaining compu-
tational and memory costs comparable to standard grid-based (e.g.,
advection-projection) or particle-grid (PIC/FLIP) fluid solvers.

This paper aims to explore a third pathway to reduce the compu-
tational cost of flow-map methods, moving beyond stacking velocity
buffers or utilizing dynamic particles. The key idea is to construct
an "imperfect" flow map, rather than a "perfect" one, by reverting to
a semi-Lagrangian-style one-step advection scheme to eliminate the
velocity buffer and employing Hermite interpolation to enhance ad-
vection accuracy. At first glance, this seemingly old-fashioned idea
appears unworkable, as the distortion of flow maps could rapidly de-
grade the interpolated values and gradients from grid nodes, causing
the flow-map trajectory to quickly deviate from the ground truth.
One potential avenue for this scheme to succeed lies in the ability
to accurately compute up-to-third-order gradients of the flow map,
which are required by Hermite interpolation, a task that is compu-
tationally challenging or even impractical on a grid discretization.
We explored two strategies existing in the literature of compu-

tational physics and computer graphics to address this challenge:
(1) Gradient Evolution (GE) [Li et al. 2023], which evolves gradi-
ents along the flow map instead of relying on finite-difference or
finite-element stencils on grid nodes. While effective for first-order
derivatives, higher-order derivatives are still computed using finite
differences due to the lack of explicit evolution equations, limiting
the method’s accuracy. (2) Epsilon Difference (ED) [Chidyagwai
et al. 2011; Seibold et al. 2011], which calculates high-order deriva-
tives by placing eight sample points to form an 𝜖-sized cubic element
around each target point. However, the accuracy of the 𝜖-difference
method is constrained by 𝜖 , which is limited by machine precision,
and the efficiency of storing eight sample points per grid node is
also a concern, making the balance between stability, accuracy, and
efficiency a persistent challenge.
We propose a new flow-map advection method that combines

the merits of both Gradient Evolution and Epsilon Difference while
addressing their inherent weaknesses in stability and accuracy. The
key idea is to use Gradient Evolution to maintain accurate first-
order derivatives and then apply the Epsilon Difference method on
top of these first-order derivatives to compute higher-order mixed
derivatives, enabling a balance between precision and stability for
𝜖 . To further reduce memory consumption and computational cost,

we introduce a four-point tetrahedron Epsilon Difference method,
which requires fewer sample points compared to the standard cubic
element approach. We demonstrate the efficacy of our methods
across a variety of vortical flow simulation scenarios, achieving up to
a 90% reduction in backward map memory consumption compared
to previous buffer-based flow-map methods, while still producing
vortical structures comparable to the traditional flow map methods.
As our method integrates elements from both Epsilon Difference
and Gradient Evolution, we name it Epsilon Difference Gradient
Evolution (EDGE).

We summarize our key contributions as follows:
(1) We propose a buffer-free flowmapmethodwith𝑂 (1)memory

consumption, independent of the flow map length, while
preserving vortices comparable to buffer-based methods.

(2) We develop a novel high-order advection scheme by evolv-
ing first-order derivatives and computing high-order mixed
derivatives using the epsilon difference method, addressing
the weaknesses of both approaches in flow map settings.

(3) We introduce a tetrahedron-based epsilon element scheme to
further reduce computational cost for flow map methods.

2 Related Work
Advection Schemes. The advection term plays a pivotal role in

fluid dynamics [Stam 1999]. However, high diffusion errors caused
by repeated interpolations need to be addressed. A range of solu-
tions has been extensively explored within both the computational
physics and graphics communities to address this challenge. No-
table methods include RK4 [Jameson et al. 1981], HJ-WENO [Losasso
et al. 2006], Hermite Interpolation [McGregor and Nave 2019; Nave
et al. 2010; Ni et al. 2020], Jet Scheme [Seibold et al. 2011], energy
conservative semi-lagrangian method [Lentine et al. 2011b], the
MacCormack method [Selle et al. 2008], and the Back and Forth
Error Compensation and Correction (BFECC) method [Kim et al.
2006], among others. These improved advection schemes have led to
remarkable advancements in simulating various phenomena, with
smoke simulation [Fedkiw et al. 2001; Kim et al. 2006; Lentine et al.
2011a; Mullen et al. 2009] standing out as a particularly signifi-
cant application, requiring exacting accuracy to capture its intricate
vortical behavior.

Recently, advection techniques utilizing flowmap methods [Deng
et al. 2023; Nabizadeh et al. 2022; Taylor and Nave 2023] have
achieved state-of-the-art results in simulating incompressible flows.
The progress and development of these techniques will be further
reviewed in a subsequent section.

Impulse and Vortex Methods. Flow map methods are highly re-
lated to the impulse model. Initially introduced by [Buttke 1992], this
concept provides an alternative formulation of the incompressible
Navier-Stokes equations using a gauge variable and gauge trans-
formation [Buttke and Chorin 1993; Oseledets 1989; Roberts 1972].
Following research explored its application to surface turbulence
[Buttke 1993; Buttke and Chorin 1993], fluid-structure interactions
[Cortez 1996; Summers 2000], and numerical stability [Weinan and
Liu 2003]. More recently, Saye [2016, 2017] utilized gauge freedom
to handle interfacial discontinuities in density and viscosity for free
surface flows and fluid-structure coupling. In computer graphics,
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this concept of gauge freedom was revised in recent works [Deng
et al. 2023; Feng et al. 2022; Li et al. 2024a; Nabizadeh et al. 2022].
Vortex methods, on the other hand, use a different way to re-

formulate the incompressible Navier-Stokes equations by treating
vorticity as a gauge variable for velocity. Because vorticity is explic-
itly advected in this approach, fluid circulation is preserved naturally.
To represent vorticity, some chose to use Lagrangian methods, in-
cluding particles [Angelidis 2017; Cottet et al. 2000; Park and Kim
2005; Zhang and Bridson 2014], filaments [Angelidis and Neyret
2005; Padilla et al. 2019; Weißmann and Pinkall 2010], segments
[Xiong et al. 2021], sheets [Brochu et al. 2012; Pfaff et al. 2012],
and Clebsch level sets [Chern et al. 2016; Xiong et al. 2022; Yang
et al. 2021]. While these representations improve the preservation of
vortex structures, they are less straightforward to implement com-
pared to the Eulerian vortex method, especially when dealing with
solid boundaries. Others [Ando et al. 2015; Yin et al. 2023] adopted
vorticity-streamfunction formulations to handle boundaries and
solved a potential equation. Wang et al. [2024] proposed a new
scheme based on flow maps for vorticity-to-velocity reconstruction
that is both efficient and able to accurately handle boundaries.

Flow Map Methods. The origins of flow map methods can be
traced back to the characteristic map approach in computational
fluid dynamics (CFD). Wiggert and Wylie [1976] first applied this
method to fluid simulation tomitigate numerical dissipation through
velocity field-advected long-range mapping. Subsequently, the tech-
nique was adopted in computer graphics by Hachisuka [2005] and
Tessendorf and Pelfrey [2011]. Later research [Sato et al. 2018, 2017;
Tessendorf 2015] commonly relied on computationally intensive
virtual particle methods to track flow maps. Inspired by Kim et al.
[2006], Qu et al. [2019] introduced a Semi-Lagrangian-like scheme
for bidirectional flow map advection, significantly reducing compu-
tational cost while enhancing mapping accuracy.

Recently, Nabizadeh et al. [2022] extended this framework to the
impulse fluid model [Cortez 1996]. Additionally, Neural Flow Maps
(NFM) [Deng et al. 2023] presented a novel backward flow map
advection scheme and leveraged neural networks to efficiently com-
press velocity buffers during flow map reconstruction. Wang et al.
[2024] integrated the flow map concept with the vortex method to
enhance numerical stability and physical interpretability. Further-
more, Zhou et al. [2024] introduced long-short flow maps, enabling
the transport of impulses on Lagrangian particles using the APIC
scheme [Jiang et al. 2015], achieving state-of-the-art results.

3 Mathematical Foundation

3.1 Flow Map Method
Flow maps are used to describe the correspondence between spatial
points in the domain of a flowing fluid at different times. For any two
domains U𝑡1 and U𝑡2 at times 𝑡1, 𝑡2 ≥ 𝑠 of a fluid flowing according
to the velocity field u(x, 𝑡) from initial time 𝑠 , the forward flow map
Φ𝑡1→𝑡2 : U𝑡1 → U𝑡2 and the backward flow map Ψ𝑡2→𝑡1 : U𝑡2 →
U𝑡1 are defined as mappings that satisfy Φ𝑡1→𝑡2 (x𝑝 (𝑡1)) = x𝑝 (𝑡2)
and Ψ𝑡2→𝑡1 (x𝑝 (𝑡2)) = x𝑝 (𝑡1) for any particle 𝑝 moving with the
fluid as 𝑑x𝑝 (𝑡 )

𝑑𝑡
= u(x𝑝 (𝑡), 𝑡), with position x𝑝 (𝑡) at time 𝑡 . Forward

and backward flow maps satisfy the evolution equations:
𝜕Φ𝑠→𝑡 (x)

𝜕𝑡
= u(Φ𝑠→𝑡 (x), 𝑡), Φ𝑠→𝑠 (x) = x,

𝐷Ψ𝑡→𝑠 (x)
𝐷𝑡

= 0, Ψ𝑠→𝑠 (x) = x.
(1)

The Jacobians of forward and backward flow maps are defined as
F𝑡1→𝑡2 (x) =

𝜕Φ𝑡1→𝑡2 (x)
𝜕x , x ∈ U𝑡1 and T𝑡2→𝑡1 (x) =

𝜕Ψ𝑡2→𝑡1 (x)
𝜕x , x ∈

U𝑡2 respectively, which can be proved to satisfy the evolution equa-
tions [Deng et al. 2023]:

𝜕F𝑠→𝑡 (x)
𝜕𝑡

= ∇u(Φ𝑠→𝑡 (x), 𝑡)F𝑠→𝑡 (x), F𝑠→𝑠 (x) = I,

𝐷T𝑡→𝑠 (x)
𝐷𝑡

= −T𝑡→𝑠 (x)∇u(x, 𝑡), T𝑠→𝑠 (x) = I,
(2)

where I is the identity matrix.
For incompressible fluids that satisfy the Euler equations,(

𝜕

𝜕𝑡
+ u · ∇

)
u = − 1

𝜌
∇𝑝 + f,

∇ · u = 0,
(3)

where 𝜌 , 𝑝 , and f denote the fluid’s density, pressure, and fluid forces,
like viscous force f𝑣 = 𝜈Δu with viscosity 𝜈 . Flow maps can be used
to describe their solutions as [Li et al. 2024b]:

u(x, 𝑡) = T⊤
𝑡→𝑠 (x)u(Ψ𝑡→𝑠 (x), 𝑠) + T⊤

𝑡→𝑠 (x)Γu
𝑠→𝑡 (Ψ𝑡→𝑠 (x)),

Γu
𝑠→𝑡 (x) =

∫ 𝑡

𝑠

F⊤
𝑠→𝜏 (x)

(
− 1
𝜌
∇𝑝 + 1

2∇|u|
2 + f

)
(Φ𝑠→𝜏 (x), 𝜏)𝑑𝜏,

(4)
where the first term u𝑀𝑡 (x) = T𝑡→𝑠 (x)⊤u(Ψ𝑡→𝑠 (x), 𝑠) of u(x, 𝑡)
is referred to as the long-term mapped velocity since it is directly
mapped from the initial velocity u𝑠 using long-term flow maps
Ψ𝑡→𝑠 , and Γu

𝑠→𝑡 is called the path integrator because it accumulates
integration along the trajectory Sx0 (𝑡) = Φ𝑠→𝑡 (x0) for any material
point x0 ∈ U𝑠 on the flow map. Furthermore, for the vorticity-form
Euler equations (

𝜕

𝜕𝑡
+ u · ∇

)
𝝎 = (𝝎 · ∇)u + ∇ × f,

∇ × u = 𝝎,
(5)

flow maps can also be used to describe their solutions as
𝝎 (x, 𝑡) = T −1

𝑡→𝑠 (x)𝝎 (Ψ𝑡→𝑠 (x), 𝑠) + T −1
𝑡→𝑠 (x)Γ𝝎𝑠→𝑡 (Ψ𝑡→𝑠 (x)),

Γ𝝎𝑠→𝑡 (x) =
∫ 𝑡

𝑠

F −1
𝑠→𝜏 (x) (∇ × f) (Φ𝑠→𝜏 (x), 𝜏)𝑑𝜏,

(6)

where the first term, 𝝎𝑀
𝑡 (x) = T −1

𝑡→𝑠 (x)𝝎 (Ψ𝑡→𝑠 (x), 𝑠), is similarly
referred to as the long-term mapped vorticity, and Γ𝝎𝑠→𝑡 is the path
integrator for vorticity.

The flow map method utilizes long-term mapped velocity u𝑀𝑡 (x)
[Deng et al. 2023] and vorticity 𝝎𝑀

𝑡 (x) [Wang et al. 2024] instead
of computing short-term advected velocity u𝐴𝑡 (x) = u𝑡 ′ (Ψ𝑡→𝑡 ′ (x)),
which is calculated repeatly from the previous substep time 𝑡 ′ in
semi-Lagrangian methods when solving the advection terms in
Equation 3. By avoiding repeated interpolations inherent in semi-
Lagrangian approaches, the flow map method prevents cumulative
numerical dissipation, ensuring more accurate advection calcula-
tions and demonstrating superior vorticity preservation capabilities.
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(a) Forward map evaluation in EFM

(b) Backward map evaluation in EFM

(c) Backward map evaluation with interpolation

Fig. 2. Comparison of methods for evolving flow maps. (a) Forward flow
maps are evolved progressively over time steps. (b) Backward flow maps can
be computed by inversely evolving forward maps from the (𝑘 + 1)-th time
step back to the initial time, which requires storing velocity fields for the
previous 𝑘 steps. (c) When backward flow maps are progressively evolved
using a semi-Lagrangian scheme, interpolation is inevitable.

3.2 Memory Issues for Flow Map Buffers
In the flowmapmethod, accurate computation of u𝑀𝑡 (x) and𝝎𝑀

𝑡 (x)
depends on the accuracy of the flow maps and their Jacobians and
thus computing flow maps and their Jacobians precisely is critical.
For the Eulerian method, in Equation 1 and Equation 2, the evo-
lution equations of Φ𝑠→𝑡 and F𝑠→𝑡 can be accurately computed
using high-order time integration algorithms, like the 4th order
Runge-Kutta (RK4) method without advection terms, while the evo-
lution equations of Ψ𝑡→𝑠 and T𝑡→𝑠 contain advection terms, making
their stable computation require the semi-Lagrangian method. The
repeated interpolation of the semi-Lagrangian method with low-
accuracy kernel-based interpolation leads to accumulated errors,
making the evolution of Ψ𝑡→𝑠 and T𝑡→𝑠 inaccurate. Therefore, the
key issue in flow map calculation is to calculate Ψ𝑡→𝑠 and
T𝑡→𝑠 accurately.
Deng et al. [2023] found that at any given time 𝑟 , Ψ𝑟→𝑠 and T𝑟→𝑠

can be viewed as the result of evolving Ψ𝑟→𝑡 and T𝑟→𝑡 backward
from time 𝑟 to time 𝑠 , which follow the evolution equations in this
inverse fluid motion process:{

𝜕Ψ𝑟→𝑡 (x)
𝜕𝑡 = u(Ψ𝑟→𝑡 (x), 𝑡), Φ𝑟→𝑟 (x) = x,

𝜕T𝑟→𝑡 (x)
𝜕𝑡 = ∇u(Ψ𝑟→𝑡 (x), 𝑡)T𝑟→𝑡 (x), T𝑟→𝑟 (x) = I.

(7)

Since Equation 7 does not contain advection terms, it can be ac-
curately computed using the RK4 method, similar to Φ𝑠→𝑡 and
F𝑠→𝑡 . With the precise computation of Ψ𝑟→𝑠 and T𝑟→𝑠 , [Deng et al.

Fig. 3. A 2D intuition experiment comparing flow map advection schemes.
The flow features a clockwise vorticity field centered at (0.5, 0.5) . The red
point marks the common starting point, while crosses mark endpoints. The
red line (ref ) is the analytical advection position. Φ and Ψ correspond to the
forward and backward flow maps respectively. ED, GE, and EDGE are our
proposed schemes, while SL is the classic semi-Lagrangian scheme. Notably,
Φ also represents the inverse backward flow map advection as in [Deng et al.
2023]. The closer a cross lies to the red reference cross, the more accurate
the corresponding advection scheme is.

2023] achieves better results compared to directly using the semi-
Lagrangian method with low-accuracy kernel-based interpolation
to compute Ψ𝑟→𝑠 and T𝑟→𝑠 [Nabizadeh et al. 2022; Qu et al. 2019].
We refer to this approach as the Eulerian Flow Maps (EFM) method.

However, in the EFM method, for each time step 𝑟 > 𝑠 , a full
evolution ofΨ𝑟→𝑡 andT𝑟→𝑡 from time 𝑟 to time 𝑠 must be performed,
as shown in Figure 2. Specifically, at the (𝑘 + 1)-th substep, the
velocity field of the previous 𝑘 substeps must be stored and used to
evolve flow maps through 𝑘 iterations from the current substep to
the initial time. This results in a total computational complexity of
𝑂 (𝑘2) and requiring the storage of 𝑘 velocity buffers for calculating
Ψ𝑟→𝑠 and T𝑟→𝑠 of the first 𝑘 + 1 substeps.

In the following discussions, our primary focus is on optimizing
backward map memory, which dominates the memory cost in flow-
map methods. Meanwhile, tracking overall simulation memory and
total memory usage remains meaningful for evaluating practical per-
formance. Here, overall simulation memory refers to the necessary
memory required for running the simulation, excluding auxiliary
buffers, visualization data, and and runtime overhead introduced
by the implementation framework. To provide a comprehensive
evaluation, we report all three metrics in Table 1.

4 Flow Map with Hermite Interpolation
EFM accurately computes Ψ𝑟→𝑠 and T𝑟→𝑠 by solving the evolu-
tion Equation 7 of the inverse process with no advection terms.
Despite high accuracy, it results in a computational cost of 𝑂 (𝑘2)
in time and 𝑂 (𝑘) in space. Unlike EFM, we continue to compute
the evolution Equation 1 and Equation 2 of Ψ𝑡→𝑠 and T𝑡→𝑠 with
advection terms and improve the accuracy of computing advection
with semi-Lagrangian method directly.

The error in the semi-Lagrangian method mainly lies in the accu-
mulation of interpolation errors at each advection step. At each time
𝑟 , Ψ𝑟→𝑠 is obtained by interpolating from Ψ𝑟 ′→𝑠 of the last time step
𝑟 ′, i.e. Ψ𝑟→𝑠 (x) = 𝐼 [Ψ𝑟 ′→𝑠 ] (Ψ𝑟→𝑟 ′ (x)), where 𝐼 [𝑓 ] (x) denotes the
interpolation function that evaluates field 𝑓 at position x. Since
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Fig. 4. The evolution of a trefoil.

Ψ𝑟 ′→𝑠 is itself obtained by interpolating from an even earlier time
step 𝑟 ′′, and so forth, this repeated interpolation process leads to
the accumulation of errors from all previous steps when computing
Ψ𝑟→𝑠 (x). Using a low-accuracy kernel-based interpolation function
𝐼 exacerbates error accumulation over multiple time steps, resulting
in significant inaccuracies in Ψ𝑟→𝑠 (x). To mitigate this issue, we
incorporate high-accuracy Hermite interpolation 𝐻 [𝑓 ] (x) into the
semi-Lagrangian computation of Ψ𝑟→𝑠 and T𝑡→𝑠 , which reduces
interpolation errors and, ultimately, reduces the accumulated errors
when computing Ψ𝑟→𝑠 (x). As shown in Figure 3, we conduct a 2D
intuition experiment for all different strategies to present the issue
and solution to the flow map evolution.

In subsection 4.1, we introduce Hermite interpolation. In subsec-
tion 4.2, we incorporate Hermite interpolation to compute evolution
of Ψ𝑡→𝑠 (𝑥) and T𝑡→𝑠 (x) using the semi-Lagrangian method. In our
discussion, we take 3D case as an example, and the 2D approach
can be derived similarly.

4.1 Hermite Interpolation
Consider a grid 𝐺 with spacing Δ𝑥 , with the set of grid points
represented as G. For any field 𝑣 , we use the subscript 𝑔 to denote
its value at a grid point 𝑔 ∈ G, i.e., 𝑣𝑔 = 𝑣 (x𝑔), where x𝑔 represents
the position of the grid point 𝑔.
For a scalar field 𝑓 (x), Hermite interpolation utilizes the values

(𝑓𝑔) stored on the grid and its partial derivatives of orders up to
one in each direction 𝑓

(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 , where 𝑑𝑥 , 𝑑𝑦, 𝑑𝑧 = 0, 1 to perform

interpolation:

𝐻 [𝑓 ; 𝑓𝑔, 𝑓
(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 ] (x)

=
∑︁

𝑔∈𝑁 (x)

1∑︁
𝑖, 𝑗,𝑘=0

[𝑓 (𝑖 𝑗𝑘 )𝑔 ℎ (𝑖 𝑗𝑘 )
(x − x𝑔

Δ𝑥

)
Δ𝑥𝑖+𝑗+𝑘 ],

(8)

where the terms 𝑓𝑔, 𝑓
(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 after the semicolon represent the in-

formation required for interpolation, 𝑁 (x) represents the 8 vertex
points of the cubical cell containing position x, Δ𝑥 represents the
grid edge length, and 𝑓

(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 =

𝜕𝑑𝑥 +𝑑𝑦+𝑑𝑧 𝑓

𝜕𝑥𝑑𝑥 𝜕𝑦𝑑𝑦 𝜕𝑧𝑑𝑧

���
x=x𝑔

. For exam-

ple, 𝑓 (011)𝑔 =
𝜕2 𝑓
𝜕𝑦𝜕𝑧

���
x=x𝑔

, and 𝑓
(000)
𝑔 = 𝑓𝑔 . The expression for the

Fig. 5. Vorticity (top row) and smoke (bottom row) visualizations of an
airflow passing through a delta wing.

interpolation kernel ℎ (𝑖 𝑗𝑘 ) (x) is given by:

ℎ (𝑖 𝑗𝑘 ) (x) = ℎ (𝑖 ) (𝑥1)ℎ ( 𝑗 ) (𝑥2)ℎ (𝑘 ) (𝑥3), x = (𝑥1, 𝑥2, 𝑥3),

ℎ (0) (𝜃 ) =
{
2|𝜃 |3 − 3|𝜃 |2 + 1, |𝜃 | < 1,
0, otherwise,

ℎ (1) (𝜃 ) =
{
𝜃3 − 2𝜃2 + 𝜃, |𝜃 | < 1,
0, otherwise.

(9)

The gradient of the Hermite interpolant ∇𝐻 [𝑓 ; 𝑓𝑔, 𝑓
(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 ] (x)

can serve as an interpolation of ∇𝑓 (x), since Hermite interpolation
satisfies the property

∇𝐻 [𝑓 ; 𝑓𝑔, 𝑓
(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 ] (x𝑔) = (𝑓 (100)𝑔 , 𝑓

(010)
𝑔 , 𝑓

(001)
𝑔 ). (10)

Let �̃� [∇𝑓 ; 𝑓𝑔, 𝑓
(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 ] (x) = ∇𝐻 [𝑓 ; 𝑓𝑔, 𝑓

(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 ] (x) denote the

interpolation of ∇𝑓 induced by 𝐻 [𝑓 ; 𝑓𝑔, 𝑓
(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 ] (x).

For a vector field v(x), 𝐻 [v; v𝑔, v
(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 ] (x) represents per-

forming Hermite interpolation on each component 𝑣𝑖 of v(𝑥) =

(𝑣1 (𝑥), 𝑣2 (𝑥), . . . ) individually, where v𝑔 = (𝑣1,𝑔, 𝑣2,𝑔, ...), v
(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑔 =

(𝑣 (𝑑𝑥𝑑𝑦𝑑𝑧 )1,𝑔 , 𝑣
(𝑑𝑥𝑑𝑦𝑑𝑧 )
2,𝑔 , . . . ), and 𝑣𝑖,𝑔 represents the value of the com-

ponent 𝑣𝑖 at the grid point 𝑔.

4.2 Hermite Interpolation for Flow Map Evolution
Nowwe incorporate Hermite interpolation with flowmap evolution.
At 𝑟 = 𝑟 ′ +Δ𝑡 , we already have the values of Ψ𝑟 ′→𝑠,𝑔 and Ψ(𝑖 𝑗𝑘 )

𝑟 ′→𝑠,𝑔
at

the grid points . Using this information, we aim to compute Ψ𝑡→𝑠

at the grid points G using the semi-Lagrangian method to evaluate
Equation 1. The detailed procedure is as follows:

for any grid point 𝑔,
(1) Calculate x′𝑔 by integrating

𝑑x
𝑑𝑡

= u𝑟 ′ (x) (11)

from time 𝑟 to 𝑟 ′ with initial value x = x𝑔 by RK4.
(2) Compute Ψ𝑟→𝑠 (x𝑔) = 𝐻 [Ψ𝑟 ′→𝑠 ;Ψ𝑟 ′→𝑠,𝑔,Ψ

(𝑖, 𝑗,𝑘 )
𝑟 ′→𝑠,𝑔

] (x′𝑔).

(3) Prepare Ψ(𝑖, 𝑗,𝑘 )
𝑟→𝑠,𝑔 for the Hermite interpolation at the next time

step.
Here (1) is the backtrace process of the semi-Lagrangian method.
(3) is necessary because the information of Ψ(𝑖, 𝑗,𝑘 )

𝑟→𝑠,𝑔 is required to
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(a) Eight-Point Epsilon Difference (b) Four-Point Epsilon Difference

Fig. 6. Epsilon difference element configuration. (a) Relative positions of
q(𝑙,𝑚,𝑛)
𝑔 , 𝑙,𝑚,𝑛 = 0, 1 and x𝑔 in eight-point epsilon difference. (b) Relative

positions of q(𝑙 )
𝑔 , 𝑙 = 0, 1, 2, 3 and x𝑔 in four-point epsilon difference.

form interpolant 𝐻 [Ψ𝑟→𝑠 ;Ψ𝑟→𝑠,𝑔,Ψ
(𝑖, 𝑗,𝑘 )
𝑟→𝑠,𝑔 ] for Hermite interpola-

tion next time step. The remaining problem is to compute Ψ(𝑖, 𝑗,𝑘 )
𝑟→𝑠,𝑔 ,

𝑖, 𝑗, 𝑘 = 0, 1.

4.2.1 Gradient Evolution (GE). Li et al. [2023] proposed a method
for evolving flow maps and their derivatives. The first-order par-
tial derivatives of Ψ𝑟→𝑠 , i.e., (Ψ(1,0,0)

𝑟→𝑠 ,Ψ(0,1,0)
𝑟→𝑠 ,Ψ(0,0,1)

𝑟→𝑠 )⊤ actually
form the Jacobian matrix T𝑟→𝑠 of Ψ𝑟→𝑠 , and based on the fact that
Ψ𝑟→𝑠 (x) = Ψ𝑟 ′→𝑠 (Ψ𝑟→𝑟 ′ (x𝑔)), T𝑟→𝑠,𝑔 can be converted by the
chain rule as

T𝑟→𝑠,𝑔 =
𝜕Ψ𝑟 ′→𝑠 (y)

𝜕y
|y=Ψ𝑟→𝑟 ′ (x𝑔 )

𝜕Ψ𝑟→𝑟 ′ (x)
𝜕x

|x=x𝑔

= T𝑟 ′→𝑠 (Ψ𝑟→𝑟 ′ (x𝑔))T𝑟→𝑟 ′,𝑔,

(12)

where T𝑟→𝑟 ′,𝑔 can be calculated by integrating 𝑑T
𝑑𝑡

= ∇u(x)T to-
gether with step (1). At step (3), first-order derivative ∇Ψ𝑟→𝑠,𝑔 =

(Ψ(1,0,0)
𝑟→𝑠,𝑔 ,Ψ

(0,1,0)
𝑟→𝑠,𝑔 ,Ψ

(0,0,1)
𝑟→𝑠,𝑔 ) can be computed by

∇Ψ𝑟→𝑠,𝑔 = �̃� [∇Ψ𝑟 ′→𝑠 ;Ψ𝑟 ′→𝑠,𝑔,Ψ
(𝑑𝑥𝑑𝑦𝑑𝑧 )
𝑟 ′→𝑠,𝑔

] (x𝑔)T𝑟→𝑟 ′,𝑔 . (13)

However, since the linear chain rule holds only for first-order deriva-
tives, there is no simple computation method for higher-order mixed
derivatives of Ψ𝑡→𝑠 . But according to [Li et al. 2023], these higher-
order mixed derivatives can be computed using finite differences
of the first-order derivatives Ψ(𝑖, 𝑗,𝑘 )

𝑡→𝑠,𝑔 on a grid without significantly

compromising accuracy. For instance, Ψ(1,1,0)
𝑡→𝑠,𝑔 =

Ψ(1,0,0)
𝑡→𝑠,𝑔𝑦+−Ψ(1,0,0)

𝑡→𝑠,𝑔𝑦−
Δ𝑥

where 𝑔𝑦± are the grid points with position 𝑥𝑔 + (0,±Δ𝑥, 0). We
refer to this method as the Gradient Evolution (GE) Method.

Method 4.2.1: Gradient Evolution Method
(1) Calculate x′𝑔 and T𝑟→𝑟 ′,𝑔 by integrating 𝑑x

𝑑𝑡
= u𝑟 ′ (x)

and 𝑑T
𝑑𝑡

= ∇u(x)T together from time 𝑟 to 𝑟 ′ with
initial value x = x𝑔 and T = I by RK4.

(2) ComputeΨ𝑟→𝑠 (x𝑔) = 𝐻 [Ψ𝑟 ′→𝑠 ;Ψ𝑟 ′→𝑠,𝑔,Ψ
(𝑖, 𝑗,𝑘 )
𝑟 ′→𝑠,𝑔

] (x′𝑔).
(3) Calculate first-order derivative of Ψ𝑟→𝑠 (x𝑔) by Equa-

tion 13 and higher-order mixed derivatives by finite
difference on the grid 𝐺 .

4.2.2 Epsilon Difference (ED). Another method for computing
Ψ(𝑖, 𝑗,𝑘 )
𝑟→𝑠,𝑔 , where 𝑖, 𝑗, 𝑘 = 0, 1, is known as the epsilon difference

method [Chidyagwai et al. 2011; Seibold et al. 2011]. This method
utilizes the values of Ψ𝑟→𝑠 at several virtual particles surrounding
the grid point𝑔 to computeΨ(𝑖, 𝑗,𝑘 )

𝑟→𝑠,𝑔 . For any grid point𝑔, as shown in
Figure 6a, we consider the eight neighboring points q(𝑖, 𝑗,𝑘 )

𝑔 around
x𝑔 :

q(𝑙,𝑚,𝑛)
𝑔 = x𝑔 − ((−1)𝑙𝜖Δ𝑥, (−1)𝑚𝜖Δ𝑥, (−1)𝑛𝜖Δ𝑥), (14)

where 𝜖 is a tunable parameter that determines the accuracy of the
spatial derivative computation using the epsilon difference method.
At time 𝑟 , the values of Ψ𝑟→𝑠 at q(𝑙,𝑚,𝑛)

𝑔 can be obtained using the
same method as for Ψ𝑟→𝑠 (𝑥𝑔) by interpolating Ψ𝑟 ′→𝑠 at q′ (𝑙,𝑚,𝑛)

𝑔 ,
where q′ (𝑙,𝑚,𝑛)

𝑔 is calculated by integrating Equation 11 with ini-
tial value q(𝑙,𝑚,𝑛)

𝑔 . By performing finite differences at the fine grid
formed by eight points q(𝑙,𝑚,𝑛)

𝑔 , Ψ(𝑖, 𝑗,𝑘 )
𝑟→𝑠 (x𝑔) can be computed as:

Ψ(𝑖, 𝑗,𝑘 )
𝑟→𝑠 (x𝑔) =

∑1
𝑙,𝑚,𝑛=0 (−1)

𝑆 (𝑖, 𝑗,𝑘,𝑙,𝑚,𝑛)Ψ𝑟→𝑠 (q(𝑙,𝑚,𝑛)
𝑔 )

8(𝜖Δ𝑥)𝑖+𝑗+𝑘
. (15)

Here, 𝑆 (𝑖, 𝑗, 𝑘, 𝑙,𝑚, 𝑛) = 𝑖 + 𝑙 + 𝑗 +𝑚 + 𝑘 + 𝑛 is the function that
helps to compute the sign of each term. In this computation, the
error depends on 𝜖Δ𝑥 , compared to the error of directly using finite
differences on the grid 𝐺 , which depends on Δ𝑥 . Since 𝜖 can be
chosen to be a small value, the error in Equation 15 is much better
than that of direct finite differences. This method is called Eight-
Point Epsilon Difference (ED8) Method.

Method 4.2.2: Eight-Point Epsilon Difference Method

(1) Calculate x′𝑔 and q′ (𝑙,𝑚,𝑛)
𝑔 by integrating 𝑑x

𝑑𝑡
= u𝑟 ′ (x)

from time 𝑟 to 𝑟 ′ with initial value x = x𝑔 and x =

q(𝑙,𝑚,𝑛)
𝑔 respectively by RK4.

(2) ComputeΨ𝑟→𝑠 (x𝑔) = 𝐻 [Ψ𝑟 ′→𝑠 ;Ψ𝑟 ′→𝑠,𝑔,Ψ
(𝑖, 𝑗,𝑘 )
𝑟 ′→𝑠,𝑔

] (x′𝑔).

(3) Compute Ψ𝑟→𝑠 (q(𝑙,𝑚,𝑛)
𝑔 ) by Hermite interpolation sim-

ilar to Ψ𝑟→𝑠 (x𝑔) and then compute Ψ(𝑖 𝑗𝑘 )
𝑟→𝑠 (x𝑔) by Equa-

tion 15.
In ED8, a cubic element consisting of eight points is used to

compute the spatial derivatives of Ψ𝑡→𝑠 at x𝑔 . Actually, other 3D
elements can also be utilized for this computation. We propose a
method based on a tetrahedral element with four points around
grid point 𝑔 to compute Ψ𝑡→𝑠 , achieving computational accuracy
comparable to the ED8 with faster computation speed. For any grid
point 𝑔, as shown in Figure 6b, we consider the four neighboring
points q(𝑙 )

𝑔 , 𝑙 = 0, 1, 2, 3 around 𝑥𝑔 , with values q(0)
𝑔 = q(1,0,0)

𝑔 ,q(1)
𝑔 =

q(0,1,0)
𝑔 ,q(2)

𝑔 = q(0,0,1)
𝑔 and q(3)

𝑔 = q(1,1,1)
𝑔 , and the first-order deriva-

tives can be calculated as

Ψ(𝑖, 𝑗,𝑘 )
𝑟→𝑠 =

Ψ𝑟→𝑠 (q(3)
𝑔 ) +∑2

𝑙=0 (−1)
𝑆 (𝑖, 𝑗,𝑘,𝑙 )Ψ𝑟→𝑠 (q(𝑙 )

𝑔 )
2𝜖Δ𝑥 , 𝑖 + 𝑗 + 𝑘 = 1,

(16)
where the sign function 𝑆 (𝑖, 𝑗, 𝑘, 𝑙) = 0 only when (𝑖, 𝑙) = (1, 0),
( 𝑗, 𝑙) = (1, 1), (𝑘, 𝑙) = (1, 2), otherwise 𝑆 (𝑖, 𝑗, 𝑘, 𝑙) = 1. The four
points q(𝑖 )

𝑔 cannot be used to compute higher-order mixed partial
derivatives directly, but similar to the GE method, these derivatives
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EFM PFM

ED8 ED4

GE EDGE

Fig. 7. Comparison of 3D leapfrogging vortices. Our methods are able to
achieve the same performance or even outperform previous EFM and PFM
methods.

can be obtained by applying finite-difference calculations to the
first-order derivatives on the grid. We refer to this method as the
Four-Point Epsilon Difference (ED4) Method.

Method 4.2.3: Four-Point Epsilon Difference Method

(1) Calculate x′𝑔 and q′ (𝑙 )𝑔 by integrating 𝑑x
𝑑𝑡

= u𝑟 ′ (x) from
time 𝑟 to 𝑟 ′ with initial value x = x𝑔 and x = q(𝑙 )

𝑔

respectively by RK4.
(2) ComputeΨ𝑟→𝑠 (x𝑔) = 𝐻 [Ψ𝑟 ′→𝑠 ;Ψ𝑟 ′→𝑠,𝑔,Ψ

(𝑖, 𝑗,𝑘 )
𝑟 ′→𝑠,𝑔

] (x′𝑔).

(3) Compute Ψ𝑟→𝑠 (q(𝑙 )
𝑔 ) by Hermite interpolaition similar

to Ψ𝑟→𝑠 (x𝑔) and then compute first-order derivatives
by Equation 16. High-order mixed derivatives are com-
puted by finite difference on the grid 𝐺 .

4.2.3 Epsilon Difference Gradient Evolution (EDGE). In our experi-
ments, we found that the Gradient Evolutionmethod and the Epsilon
Difference method cannot achieve the same level of accuracy as
the previous EFM method, as shown in Figure 3. Analyzing these
two methods, we observe that (1) while the GE method accurately
computes the first-order derivatives of Ψ𝑟→𝑠 , its high-order mixed
derivatives calculated by finite difference approximations on the
coarse grid G are inaccurate. (2) the ED method, on the other hand,
can achieve highly accurate computations by using small 𝜖 to form
a very fine local grid around each grid point 𝑔, but the value of 𝜖
is constrained by machine precision, and excessively small 𝜖 can
lead to computational instability. With a stable choice of 𝜖 , ED still
can not match the accuracy of EFM. To address this issue, we pro-
pose a new method, the Epsilon-Difference Gradient Evolution
(EDGE)method, based on both GE and EDmethods. This approach

Fig. 8. The collision and reconnection of four vortices.

achieves, and even surpasses, the accuracy of the EFM method (see
Figure 7 for validation).

EDGE is based on the fact that the calculation with a fine 𝜖-sized
grid in ED method is more accurate compared to direct finite dif-
ference calculation on the grid G. To improve the GE method, we
replace the finite difference used for computing high-order mixed
derivatives in GE with the epsilon difference calculation. Since,
in general, the error in high-order derivatives has a lower impact
on the overall accuracy compared to first-order derivatives, we
can use a relatively large and stable 𝜖 for computing high-order
mixed derivatives with the epsilon difference method while still
maintaining high overall accuracy. Taking EDGE with four-point
epsilon difference as an example, the same method as in Equa-
tion 13 for evolving gradients is applied to obtain ∇Ψ𝑟→𝑠 (q(𝑙 )

𝑔 ) =
(Ψ(1,0,0)

𝑟→𝑠 (q(𝑙 )
𝑔 ),Ψ(0,1,0)

𝑟→𝑠 (q(𝑙 )
𝑔 ),Ψ(0,0,1)

𝑟→𝑠 (q(𝑙 )
𝑔 )). Then, second-order

mixed derivatives can be computed using the four-point epsilon
difference similar to Equation 16. For example, ∇Ψ(1,1,0)

𝑟→𝑠,𝑔 can be
calculated as:

∇Ψ(1,1,0)
𝑟→𝑠,𝑔 =

Ψ(0,1,0)
𝑟→𝑠 (q(3)

𝑔 ) +∑2
𝑙=0 (−1)

𝑆 (1,0,0,𝑙 )Ψ(0,1,0)
𝑟→𝑠 (q(𝑙 )

𝑔 )
2𝜖Δ𝑥 . (17)

Here, we present the EDGE method with the four-point epsilon
difference calculation, which can be similarly extended to EDGE
with an eight-point epsilon difference calculation.

Method 4.2.4: Epsilon-Difference Gradient Evolution
Method

(1) From time 𝑟 to 𝑟 ′ using RK4, integrate 𝑑x
𝑑𝑡

= u𝑟 ′ (x)
for x′𝑔 and q′ (𝑙 )𝑔 with initial value x = x𝑔 and q(𝑙 )

𝑔 re-
spectively and integrate 𝑑T

𝑑𝑡
= ∇u(x)T for T𝑟→𝑟 ′,𝑔 and

T𝑟→𝑟 ′ (q(𝑙 )
𝑔 ) with initial value T = I simultaneously.

(2) ComputeΨ𝑟→𝑠 (x𝑔) = 𝐻 [Ψ𝑟 ′→𝑠 ;Ψ𝑟 ′→𝑠,𝑔,Ψ
(𝑖, 𝑗,𝑘 )
𝑟 ′→𝑠,𝑔

] (x′𝑔).
(3) Calculate first-order derivative of Ψ𝑟→𝑠 (x𝑔) by Equa-

tion 13, second-order mixed derivatives by Equation 17
using four-point epsilon difference and third-ordermixed
derivatives by finite difference on the grid 𝐺 .

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



8 • Zhiqi Li, Ruicheng Wang, Junlin Li, Duowen Chen, Sinan Wang, and Bo Zhu

Length=5 Length=15 Length=25 Length=35

Fig. 9. Propeller with varying flow map lengths. Richer vortex details emerge as the flow map length increases.

4.3 Summary
In summary, we present three methods for evolving the flow map
based on Hermite interpolation: Gradient Evolution (subsubsec-
tion 4.2.1), Epsilon Difference (subsubsection 4.2.2), and Epsilon-
Difference Gradient Evolution (subsubsection 4.2.3). Unlike EFM,
none of these methods require storing a large velocity buffer. The
intuition experiment (Figure 3) demonstrates their accuracy com-
pared to the classic semi-Lagrangian method. The newly proposed
EDGE scheme achieves accuracy comparable to the original EFM
method. As shown in Table 1 and Figure 7, they achieve vorticity
preservation comparable to EFM while offering superior speed and
memory efficiency. Each of these three methods has its advantages
and disadvantages: GE is the fastest, ED has the lowest memory con-
sumption, and EDGE exhibits the strongest vorticity preservation,
even surpassing EFM.

5 Implementation and Experiments
To validate the usage and effectiveness of our method, in this section,
we first compare the time and space complexity of each algorithm
and validate our findings with numerical experiments, and then we
present several validation results for our proposed EDGE method.
These results show that our method not only can achieve results
comparable to previous state-of-the-art methods, but can also sig-
nificantly reduce memory usage and accelerate computation, as in
Table 1 and Figure 1.

5.1 Implementation Details
All simulations were conducted on an NVIDIA RTX−4090 GPU and
implemented with Taichi [Hu et al. 2019].

Discretization. We adopt the standard MAC grid [Harlow and
Welch 1965] for velocity discretization. Unlike EFM, which stores
backward flow maps and their derivatives at face centers, we store

Fig. 10. Flag stripes affected by incoming flow.

these components at cell centers and compute face values using
Hermite interpolation as needed.

Kernel Fusion. To reduce memory cost, we applied kernel fusion
to our methods. We observed that some of the variables can be
calculated on the fly, which means they do not need to be saved as
permanent memory blocks. Instead, we compute them as temporary
local variables, utilizing the GPU local cached memory.

Generality Across Flow Map Frameworks. In addition to EFM, to
demonstrate the seamless integration of our approach with existing
flow map frameworks, we incorporate our method into recently
proposed particle-laden flows method [Li et al. 2024b] and solid-
fluid interactions method [Chen et al. 2024]. In our implementation,
we replace the Particle Flow Maps (PFM) advection mechanism
[Zhou et al. 2024] for velocity fields with our proposed technique,
while keeping the rest of these algorithms, such as the computation
of dissipative forces and fluid-solid coupling, unchanged.

Complexity Analysis. For a flow map simulation with range 𝑛,
EFM and our Hermite-interpolated semi-Lagrangian method exhibit
different complexities in both time and space for backward map
evolution. As illustrated in Figure 2b, the evolution of backward
flow maps in EFM is designed to trace back to the reference frame.
During an 𝑛-step simulation, the backtracing process is executed
𝑂 (𝑛2) times. Additionally, it requires storing the velocity history,
incurring an 𝑂 (𝑛) backward map memory cost. In contrast, our
method evolves the backward flow maps continuously, backtracing
and interpolating them only with the previous frame. This results
in a significant reduction in complexity, achieving 𝑂 (𝑛) time and
𝑂 (1) backward map memory consumption. If we define storing
a floating-point number at each grid point in the domain as one
memory unit, then the original EFM implementation requires 18+3𝑛
units for backward map evolution. In contrast, our proposed ED4

Re = 3.5 Re = 5.0 Re = 5.5 Re = 3.5 Re = 5.0 Re = 5.5

Fig. 11. Ink torus breakup at Reynolds numbers 3.5, 5.0, and 5.5. Left and
right column groups show early and late frames. Top and bottom rows show
top and side views. Branched blobs increase with Reynolds number.
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Table 1. Detailed resource profiling for flow map methods.

Name Resolution Flow-map
Length Method Backward Map

Mem (GB)
Overall Sim
Mem (GB)1

Total
Mem (GB)

Advection Time
(sec/substep)2

Avg. Time
(sec/substep)

Leapfrogging
Vortices 384×128×128 20

EFM 1.839 2.694 4.094 0.123 0.243
GE 1.268 2.123 3.521 0.0455 0.163
ED8 1.549 2.404 3.767 0.0588 0.175
ED4 0.563 1.417 2.763 0.0856 0.201
EDGE 0.984 1.839 3.207 0.0803 0.196
PFM 3.799 7.791 11.992 0.432 0.568
NFM 6.916 7.771 9.122 4.737 4.872

Four Vortices
Collision 128×128×256 20

EFM 1.227 1.797 2.896 0.0907 0.191
ED4 0.375 0.945 2.052 0.0589 0.153
EDGE 0.656 1.226 2.330 0.0583 0.155

Dye Drift 256×512×256 80
EFM3 32.355 37.894 42.737 4.766 4.935
ED4 3.000 8.539 13.365 0.541 0.712
EDGE 5.250 10.789 15.610 0.496 0.666

1 Overall Sim Mem refers to the necessary memory required for the simulation, excluding auxiliary buffers, visualization data, and Taichi runtime overhead.
2 Advection Time refers to the time excluding Poisson equation solving, primarily spent on advection.
3 The velocity buffer exceeds the available GPU memory and is therefore stored in CPU memory (30.098 GB), with data transferred between CPU and GPU on demand.

and EDGE methods reduce this memory cost to 24 and 42 units,
respectively. Given that our examples use flow maps of length up
to 80, our methods achieve up to a 90% reduction in backward map
memory usage.

5.2 Experimental Results
In this subsection, we begin by conducting experiments and profiling
memory and timing data to validate our proposed methods. We
then present several examples to demonstrate the generality and
effectiveness of the EDGE method.

Validation. To validate our analysis, we conducted simulations
to evaluate the resource consumption and performance of various
flow map methods, including 3D leapfrogging vortex scenes [Deng
et al. 2023] within an extended domain. The resource usage statistics
are summarized in Table 1. Without caching velocity buffers, our
method, based on Hermite interpolation, significantly reduces mem-
ory usage. Although Hermite interpolation introduces additional
computational overhead, our one-step evolution outperforms EFM
in terms of speed, as EFM relies on multi-step backtraces. The visual
results of the leapfrogging vortices simulation are shown in Figure 7.
While our GE and ED methods achieve performance comparable to
the original EFM, the EDGE method outperforms EFM by nearly
one leap. In the dye drift example shown in Figure 1, ED4 and EDGE
effectively capture fine-scale fluid structures on par with EFM. These
results highlight the superior vorticity conservation of our methods,
matching or even exceeding the performance of the original EFM.

Flow-Map Length Experiment. Since the EDGE method and EFM
differ inmemory complexity—𝑂 (1) vs.𝑂 (𝑛)—our approach becomes

more advantageous for longer flow maps. In this experiment, we
simulate a rotating propeller to validate the importance of extended
flow maps. As illustrated in Figure 9, turbulence intensity increases
with the number of flow map reinitializations due to interactions
between incoming flow and solid boundaries, enhancing simulation
detail. Since our method maintains a constant computational cost
for extending flow map length, it enables improvements without
additional computational overhead.

Four Vortices Collision. Figure 8 illustrates an experiment inspired
by [Matsuzawa et al. 2022], where four vortex rings, initially ar-
ranged in a square configuration, collide within the 𝑦𝑧-plane. Each
ring has a major radius of 0.15 and a minor radius of 0.024. As the
rings interact, they merge to form two four-pointed star-shaped
vortices before eventually colliding with the boundaries.

Trefoil. Figure 4 uses the same configuration from [Matsuzawa
et al. 2022] to replicate the trefoil knot. Our method is able to retain

Fig. 12. Ink drops passing through a porous obstacle.
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an accurate structure of vortices, yielding two separate vortex rings
in the end.

Delta Wing. Figure 5 illustrates the "vortex lift" phenomenon
generated by a delta wing with a 75° sweep angle at a 20° angle
of attack. This behavior is in agreement with the experimental
observations reported by [Délery 2003].

Two-Way Coupled Thin Film. To demonstrate the effectiveness of
solid–fluid interaction in [Chen et al. 2024] using the EDGE method,
several flag strips are subjected to an incoming flow. The motion
of the flags and the flow field are tightly coupled, resulting in rich
fluid–structure dynamics and detailed vortex structures as shown
in Figure 10.

Ink Torus Breakup. The EDGE scheme is also applicable to particle-
laden flow simulations [Li et al. 2024b]. Driven by viscous forces, an
ink torus breaks into multiple blobs, which then deform into smaller
tori and undergo further fragmentation, forming a cascading cycle
of continuous deformation and breakup. As the Reynolds number
increases (𝑅𝑒 = 3.5, 5.0, 5.5), the number of resulting blobs grows
from 4 to 8, as shown in Figure 11.

Ink Passing Porous Obstacles. Figure 12 illustrates nine ink drops
descending through the gaps between cylinders, breaking apart into
numerous smaller falling droplets.

Dye Drift. In Figure 1, a small pinch of dye is released onto the
liquid surface, allowing it to disperse freely. The image reveals rich
flow details, demonstrating the method’s superior ability to preserve
vorticity. In this example, the combination of high resolution and
long flow maps prevents EFM from storing velocity buffers on the
GPU. As a result, buffers are stored in CPU memory instead, and
the additional data transfer further slows down the simulation. This
highlights the limitations of EFM in handling large-scale simulation
scenarios.

Comparison to More Flow Map Methods. In the original flow map
simulation work [Deng et al. 2023], the velocity buffer is designed to
be compressed using neural networks. However, Zhou et al. [2024]
found that this approach introduces a significant training time cost
and additional overhead from extensive data transfers. Instead of
relying on neural networks, our method adopts a different strategy
by leveraging Hermite interpolation to eliminate the memory over-
head associated with the velocity buffer, thereby improving both
time and memory efficiency. Regarding the PFM proposed in [Zhou
et al. 2024], which also has𝑂 (1) memory complexity, we argue that
it is less efficient in terms of memory usage. This is because each
particle must carry flow map information, and, on average, each
grid cell contains 8-16 particles in a 3D simulation. Our argument is
supported by detailed memory and timing data, as shown in Table 1.

6 Limitations and Future Work
We proposed the Epsilon Difference Gradient Evolution method to
enable buffer-free flow-map simulations at O(1) memory consump-
tion. One of the primary limitations of our current scheme is its re-
liance on Hermite interpolation, which requires additional memory
storage compared to other potential alternatives. Our goal is to fur-
ther reduce memory consumption and computational overhead by

investigating alternative interpolation schemes on a Cartesian grid,
with the aim of lowering the constant factor in the 𝑂 (1) complex-
ity and achieving performance comparable to standard grid-based
solvers. Furthermore, we plan to explore GPU implementations and
performance engineering techniques to optimize the EDGE scheme
for GPU architectures. Finally, we envision extending our EDGE
scheme to support adaptive grid structures, such as octrees, which
presents an open challenge in addressing interpolation across cells
with differing resolutions.
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